Search DIAN Tissue Requests

In order to avoid the situation where two investigators study the same research question, please search our database to determine if your topic has already been studied. If you find that your topic or a related topic has already been submitted, you may wish to contact the investigator to inquire about his/her findings to determine how you might proceed. You may wish to collaborate or modify your request to avoid overlap. The results below reflect requests made since online requests have been accepted. As such, not all fields will have data as certain information, such as aims, were not collected until recently. If an entry has been assigned an ID # (e.g. DIAN-T1004), the full request has been submitted and is either approved, disapproved or in process.

Displaying 41 - 50 of 105

Investigator:

Randall Bateman

Title:

Fluid NfL levels to be used as control and run-in data for the DIAN TU

Date of Request:

10/18/2019

Status:

withdrawn

ID:

DIAN-T1913

Aim 1:

To measure NfL levels in CSF and matched plasma smaples for use as control and run-in data in the DIAN TU

Investigator:

Carlos Cruchaga

Title:

Genomic-based biomarkers for Alzheimer’s Disease

Date of Request:

10/17/2019

Status:

withdrawn

ID:

DIAN-T1912

Aim 1:

Aim 1: To construct prediction models for AD using cell-free nucleic species.

Aim 2:

Aim 2: To create novel prediction models using circular RNAs as biomarkers

Investigator:

N/A

Title:

Gene therapy for familial Alzheimer’s disease

Date of Request:

09/29/2019

Status:

approved

ID:

DIAN-T1910

Aim 1:

To determine whether introduction of wildtype PS1 can rescue γ-secretase activity in cultured fibroblasts from autosomal dominant Alzheimer disease (ADAD) patients with PSEN1 mutations

Investigator:

Kaj Blennow

Title:

Truncated tau species tau224 and tau368 in CSF and P-tau181 in plasma in familial AD as indicators of pathological brain tau metabolism

Date of Request:

08/14/2019

Status:

withdrawn

ID:

DIAN-T1908

Aim 1:

To examine how novel CSF biomarkers for tau pathology (tau truncated at positions 224 or 368) change with onset of amyloid pathology and tau pathology, as well as clinical disease onset and progression in familial AD

Aim 2:

To examine how plasma P-tau181 changes with onset of amyloid pathology and tau pathology, as well as clinical disease onset and progression in familial AD

Investigator:

Catherine Marquer

Title:

SYNAPTOJANIN 1 LEVELS IN DOMINANTLY INHERITED ALZHEIMER’S DISEASE

Date of Request:

07/05/2019

Status:

approved

ID:

DIAN-T1907

Aim 1:

To test whether the protein levels of Synaptojanin1 are increased in dominantly inherited Alzheimer's disease (DIAD), as they are in sporadic and Down Syndrome-AD

Investigator:

Djamel Lebeche

Title:

Pharmacological Validation of SERCA Activators for Diabetes Associated ADRD

Date of Request:

05/12/2019

Status:

approved

ID:

DIAN-T1906

Aim 1:

To test SERCA activators in in vitro assays to assess their ability to rescue neuronal cells from ER stress-induced cell death (neuroprotection)

Aim 2:

To test the effects of SERCA activators in animal model of diabetes and Alzheimer's disease (APP/PS1-Ob/ob mice), and in iPSC derived from AD patients

Investigator:

Houlden and Kullmann/Houlden

Title:

Dominant and Recessive Intronic Repeat Expansions in Neurodegeneration

Date of Request:

02/25/2019

Status:

Withdrawn

ID:

DIAN-T1903

Aim 1:

Screen for the GGC repeat expansion in the NOTCH2NLC gene recently associated with dominant or sporadic neurodegeneration from our and Japanese labs.

Aim 2:

Screen the AAGGG recessive expansion seen in the RF gene associated with ataxia, MSA-like phenotype and neurodegeneration.

Aim 3:

We will haplotype patients with expansions to understand relationships between samples, SNPs associated with the disease and possible founder effects.

Aim 4:

Feedback results to be paired with biobank samples

Investigator:

na

Title:

RIPK1 regulated metabolic biomarkers

Date of Request:

02/14/2019

Status:

Not approved

ID:

DIAN-T1902

Aim 1:

Compare the baseline distribution of RIPK1 regulated metabolic biomarkers in CSF samples from DIAN patients vs. cognitively normal non-carrier family member controls

Aim 2:

Generate biomarker hypothesis to inform the decision making for a DIAN population in phase2a clinical trial with RIPK1 inhibitors

Investigator:

Steven M. Greenberg

Title:

CSF Biomarkers for Dutch-type Hereditary Cerebral Amyloid Angiopathy

Date of Request:

02/07/2019

Status:

approved

ID:

DIAN-T1901

Aim 1:

1. Perform multiplex immunoassay measurements of a range of candidate biomarkers in cerebrospinal fluid (CSF) samples from carriers and non-carriers of the Dutch-type hereditary cerebral amyloid angiopathy (D-CAA) mutation enrolled in DIAN.

Aim 2:

2. Perform parallel immunoassays on plasma samples drawn at similar timepoints to determine the correlation between CSF and plasma concentrations.

Aim 3:

3. Correlate CSF and plasma biomarkers with neuroimaging, biochemical and clinical features in the enrolled mutation carriers.

Investigator:

Suman Jayadev

Title:

Immune Cell Pathways in ADAD

Date of Request:

12/10/2018

Status:

No Request Made

ID:

NA

Aim 1:

To identify innate immune cell phenotypes and gene regulatory networks in familial AD. Innate immune genes and loci harboring immune genes have been associated with sporadic AD though less is known about cell type specific immune gene networks in familial AD. Evidence from studies including those from DIAN investigators have demonstrated early changes in microglial proteins, in mutation carriers prior to clinical onset of disease. This suggests that microglial or innate immune cell activity, be it loss of homeostatic function, activation of inflammatory or tissue repair responses, disease associated responses or other yet to be defined phenotypes may contribute to FAD progression and serve as a potential therapeutic target in combination with other therapies. While modulating immune pathways in FAD may be a viable intervention, a clearer understanding of the disease relevant drivers of neural and peripheral immune pathways are needed for appropriate targeting. We propose to evaluate transcriptomic data from single nuclei and microglial enriched nuclei, isolated from frozen cortical tissue (parietal or frontal – depending upon tissue availability) from 20 FAD carriers and establish gene expression modules annotated by neural cell type. These data will be analyzed in comparison to 20 sporadic AD and 10 pathology negative controls (funding pending for sporadic AD cases). Further computational approaches by collaborators at SAGE Bionetworks will be pursued to identify proximal molecular networks in microglial, neuronal, and other glial cell types that are both shared and distinct between FAD and SAD. Additionally, we will determine the relative representation of immune cell populations and diversity of phenotypes. These studies aim to highlight the networks mediating glial biology associated with FAD. In addition, identification of the molecular programs which are shared or distinct between FAD and SAD will be relevant for therapeutic design and disease modeling for both forms of disease.