Drug Repurposing for Use in the AD Population

considerations and limitations

Barry D. Greenberg, Ph.D.
Director, Neuroscience Drug Discovery and Development, University Health Network
Director of Strategy, Toronto Dementia Research Alliance

DIAD Family Conference, AAIC
Toronto, 23 July 2016
Disclosures

Advisor to:

- Alopexx Enterprises, LLC
- CannScience
- Cognoptix, Inc.
- IntelGenx
- KalGene
- Neurodyn
- Treventis Corp.
Drug Repurposing-Repositioning
(an alternative opportunity)

What is it?

- **Definition**: The use of established drugs in new therapeutic indications to create novel value and streamlined clinical development/treatments
- **Approach**: Repositioning of drugs that have been approved for other indications, or have failed for other indications in clinical trials
- Success examples in cancer, cardiovascular disease, incontinence, irritable bowel syndrome, obesity, erectile dysfunction, smoking cessation, psychosis, attention deficit disorder and baldness
- Some classes have potential in AD based on known mechanisms, epidemiological evidence or preliminary clinical trials
- **Uptake?**
 - Support for repurposing contained within recommendations from the NIH Alzheimer’s disease research summit – 2015.
 - Under consideration for developing ADCS strategies.
The usual path to drug discovery-development (gross generalizations)

• **Preclinical**
 – Basic research leading to target identification
 – Assay development, screening
 – Target validation in preclinical models of disease
 – Lead molecule identification and optimization
 • Physical chemical properties, pharmacokinetics, pharmacodynamics
 • ADMET: Absorption, Distribution, Metabolism, Excretion, Toxicity
 – Formulations and bulk manufacturing
 – Safety, genotoxicity, multi-species toxicology, etc.

• **Clinical**
 – Phase 1 safety and exposure
 – Phase 2 target engagement, multiple dosing in patients, proof of concept
 – Pivotal phase 3 registration studies

• **Timing and cost for neurological disease**
 – 2-5 years for preclinical phase, up to 10 years for clinical phase
 – Up to $1B, perhaps more
 – Extremely low success rate
Shortcuts potentially afforded by drug repurposing for neurological disease

- Eliminates need for most, and perhaps all preclinical R&D
- Established safety substantially reduces time and costs required to advance candidate treatment through clinical trials

Clinical
 - Phase 1 safety and exposure studies may be substantially reduced or eliminated
 - Phase 2 target engagement, multiple dosing in patients, proof of concept still required, but dosing guidance and knowledge of brain penetration are often facilitated from previous studies
 - Pivotal phase 3 registration studies may also be shortened or more effectively designed based on the “facilitated” Phase 2 results

Timing and cost for neurological disease
 - Strong potential for increased success rate, or faster path to discontinuation
 - Risks: benefits for patients are better defined
 - May streamline regulatory considerations
 - 5-10 years for clinical phase still possible, but can save up to 10 years overall
 - Much less costly

University Health Network
Example #1: Levetiracetam (Keppra®)
Current indication: epilepsy

Overall rationale:

- **Strong preclinical mechanistic support in numerous basic science studies.**
- **Hippocampal overactivity ramps up during MCI due to AD.**
 - Greater hippocampal activation in fMRI studies in age-dependent memory impairment, aMCI, presymptomatic ApoE4 carriers and presymptomatic familial AD.
 - Magnitude predicts subsequent cognitive decline/conversion to AD.
 - Correlates with extent of AD-specific brain atrophy in aMCI.
- **Entorhinal cortex hypo-activity is present in MCI due to AD.**
 - EC neurons are the first to degenerate in AD.
- **Successful multi-dose phase 2 studies provided dosing optimization**
 - At doses ~1/4 those typically used as anti-convulsant, “normalizes” hippocampal hyper-activity and EC hypo-activity, while enhancing memory task performance.
- **Safety risks deemed acceptable at anti-seizure doses for epilepsy are further reduced at doses relevant to MCI, leading to streamlined regulatory path to clinical trial approval.**
Levetiracetam: The HOPE4MCI Trial

Hippocampal Overactivity Prevention in the Elderly

- A randomized double-blind trial of levetiracetam in MCI.
- Co-PIs: Drs. Michela Gallagher and Marilyn Albert
- Sponsor: AgeneBio
- Funding: Public-private partnership – AgeneBio, NIH, Johns Hopkins Univ.
- Study interventions: subjects randomized to once-daily extended-release formulation (AGB101) containing 220 mg levetiracetam vs. placebo
- Phase 3 registration study, sample size 830 subjects
 - Subjects: MCI due to AD with positive florbetapir amyloid-PET scan.
 - Treatment duration: 18 months
 - >200 sites in US, Canada & Europe
 - Planned launch 4Q2016
• **Primary efficacy outcome:** Change in Clinical Dementia Rating – Sum of Boxes (CDR-SB) – FDA-endorsed primary endpoint to measure impact on reducing cognitive decline over 18 month study duration.

• **Key secondary efficacy outcome:** Neuronal injury as measured by change in entorhinal cortex atrophy by structural MRI.

• **Additional secondary outcomes**
 – CDR (global, memory box)
 – Neuropsychological tests
 – Other MRI measures
 – GDS (geriatric depression scale)

www.HOPE4MCI.org
Clinicaltrial@agenebio.com

University Health Network
Example #2: Telmisartan (Micardis®)
Current indication: hypertension

Overall rationale:

- **Longitudinal cohort studies have established links between mid-life hypertension and AD.**

- **Controlling hypertension, which is often concomitant with other vascular risk factors, vascular dysfunction and cerebrovascular pathologies, has been shown to slow cognitive decline.**

- **Recent studies place “white-matter hyperintensities” as a cerebrovascular pathology that corresponds in time with the onset of amyloid deposition in both familial and late-onset AD, suggesting that this “vasculopathy” may be an important therapeutic target.**

- **Mechanistic and epidemiologic evidence exists for a sub-class of anti-hypertensive agents as additionally neuroprotective: the angiotensin receptor blockers (ARBs; “sartans”).**
ACEIs (the most commonly prescribed anti-hypertensive drugs) and sartans both act on the renin-angiotensin system (RAS) and have demonstrated benefits through various mechanisms in delaying MCI conversion to AD.

Key RAS receptors in the brain are AT1 (activation produces neurotoxic effects) and AT2, AT4 and Mas (neuroprotective).

- Centrally-acting ACEIs decrease activity at all of these receptors through ACE inhibition.
- Sartans selectively block AT1, allowing activation of AT2, AT4 and MAS.

ACEIs may increase cholinergic transmission by increasing ACh, but may be amyloidogenic since ACE cleaves Abeta.

Sartans increase insulin degrading enzyme, which degrades Abeta.

Telmisartan through activation of PPAR-gamma may support the blood-brain barrier, may influence brain glucose metabolism and have anti-inflammatory & anti-atherosclerotic effects.
The Sartan-AD Trial

“A randomized, open-label, proof of concept study of telmisartan vs. the ACEI perindopril in hypertensive mild-moderate AD patients”

PI: Sandra Black, MD FRCP(C); Co-PI: Dr. Krista Lanctot

Toronto Dementia Research Alliance, University of Toronto

Sponsor: Sunnybrook Research Institute

Funding: Alzheimer’s Drug Discovery Foundation-Canada and Weston Brain Institute

Study interventions: once-daily Perindopril 2-8 mg/day; Telmisartan 40-80 mg/day

Phase 2a study, planned sample size 240, 11 sites throughout Canada, enrolment period 12-18 months, 3 year study overall.
The Sartan-AD Trial

- **Primary objective:** Determine the comparative efficacy and safety of perindopril vs. telmisartan in reducing brain atrophy as indexed by MRI assessment of brain ventricular enlargement in mild-moderate probable AD participants who have treated hypertension

 - **Hypotheses:**
 - Primary outcome: Patients randomized to telmisartan will have a smaller increase in ventricular size (reduced brain volume loss) compared to those on perindopril at 12 months follow-up.
 - Safety outcome: Treatment with telmisartan will be as well tolerated as perindopril on blood pressure and other vital signs, electrolyte panel, and adverse events.

- **Secondary objective:** Determine comparative efficacies on cognitive and functional measures, and on other structural brain imaging measures

 - **Hypotheses:**
 - Secondary outcomes: Patients randomized to telmisartan will have less decline in cognition and function and will show less loss in other selected brain structures
Example #3: Montelukast (Singulair®)
Current indication: asthma

- **Novel formulation – oral film**
- **Preclinical evidence based on several mechanisms**
 - Impacts on leukotriene-mediated pathways that impact on neurotransmission, neurogenesis, blood-brain barrier integrity, neuroinflammation, neurodegeneration and axonal damage
 - Studies in preclinical animal models of Lewy Body Dementia and MCI provide evidence for improvements in learning and memory
- **Known safety/efficacy in chronic treatment of asthma**
- **Phase 1 study tbd followed by phase 2 safety/efficacy studies in appropriate patient cohort**

Montelukast Oral Film
For Improvement of Cognitive Function in MCI and AD

IntelGenx Corp.
http://www.intelgenx.com
Montelukast - Rationale

Rationale for Montelukast in MCI
An Anti-Brain Aging Molecule

Montelukast Sodium
Leukotriene receptor inhibitor
FDA approved since 1998
For the chronic treatment of asthma

Neurotransmission
eg Calabresi et al. 2007

Neurogenesis
eg Regensburger et al. 2014

Blood Brain Barrier
eg Zibkovic et al. 2008

Neuroinflammation
eg Hirsch et al. 2009

Neurodegeneration
eg Schapira et al. 2011

Demyelination
Axonal Damage
eg Franklin et al. 2008
Montelukast – Preclinical model studies

Montelukast Improves Cognition
In an Animal Model of Lewy Body Dementia

● In the WM-Test

Montelukast Improves Learning Capacity
In an Animal Model of MCI

● In the WM-Test
Montelukast – Projected clinical development path

Early Estimated Development Program

- Formulation Development
- Pilot Phase 1 Study
- Optional Formulation Optimization
- Scale-up and Process Optimization and GMP manufacturing
- Efficacy Phase 2 Study
- Regulatory Activities for Phase 3 Studies
- GMP manufacturing
- Efficacy Phase 3 Study 1
- Efficacy Phase 3 Study 2

University Health Network
Previous examples:
- Anti-fungal Clioquinol for AD – Prana
- Anti-histamine Dimebon for AD – Medivation and Pfizer
- Various statins and NSAIDs
- Urinary analgesic/anti-infective/anti-spasmodic Methylene Blue – TauRx
- Retinoid receptor agonists (i.e. anti-cancer drug bexarotene)

Examples under consideration/clinical investigation:
- Calcium channel blockers (anti-hypertensives)
- Nasal insulin, metformin & glucagon-like peptide GLP1 analogues (anti-diabetics)
- Certain anti-cancer drugs
 - Example: Fyn kinase inhibitor Saracatinib (AZD0530) based on preclinical mechanistic, genetic risk factor and animal model studies, building on known pharmacokinetics in humans, known AE profile at (non-efficacious) anti-cancer doses. Status: phase 1b CONNECT trial now recruiting for multiple ascending dose study to assess safety/tolerability in AD patients.
 - NCATS/AstraZeneca – clinical sites Yale, Banner Health, ATRI, UBC
Drug Repurposing-Repurposing (Issues)

• Risk-benefit ratio
 – All drugs have side-effects
 – Treatment of patients in pre-symptomatic disease phases = exposing healthy patients to drug risks.
 – Safety risks must be balanced against known mechanisms of action and dosing, particularly in the absence of a demonstrated clinical need.

• Challenges
 – Still requires determination of optimal dosing and administration
 – Still requires proof-of-concept in clinical trials, but may shorten clinical path
 – Economics. New funding models (i.e., cross-sector consortia) and intellectual property policies may be necessary.
 • Patent life
 • Payer support
 • Generics
Drug Repurposing-Repositioning
(Issues)

• **Risk-benefit ratio**
 - All drugs have side-effects.
 - Treatment of patients in pre-symptomatic disease phases exposes healthy patients to drug risks.
 - Safety risks must be balanced against known mechanisms of action and dosing, particularly in the absence of a demonstrated clinical need.

• **Challenges**
 - Still requires determination of optimal dosing and administration.
 - Still requires proof-of-concept in clinical trials, but may shorten clinical path.

• **Economics**
 - New funding models (i.e., cross-sector consortia) and intellectual property policies may be necessary.

- Patent life
- Payer support
- Generics
• Several promising agents have been identified for repurposing potential to treat AD.

• Mechanisms of action, dose and safety issues must be understood.

• Important to consider: what sub-populations of patients should be exposed to the selected agents, and what is the optimal stage of disease for administration?

• How will economic issues be mitigated in the event of success?
KEEP CALM AND REDUCE, REUSE, RECYCLE
Backups
1. Memory test changes
2. Rapid maximal impairment useful for MCI diagnosis
3. Limited usefulness for tracking disease progression
4. Verbal comprehension changes start later, limited diagnostic use
5. More sensitive at dementia stage
Natural progression of pathological markers

- Amyloid markers (CSF, PET) detected early, but plateau by MCI
- Functional & metabolic markers (fMRI, ¹⁸FDG-PET) abnormal by MCI and progress into dementia stages
- Structural changes (sMRI) follow temporal pattern of clinical disease, brain atrophy and tau pathology
So what is this telling us?

Anti-amyloid therapies will likely work only aspreventatives.

Administration followingonset of dementia is likely too late.

Key: identification of patients at risk in prodromal stages.